131 research outputs found

    A Compact Linear Programming Relaxation for Binary Sub-modular MRF

    Full text link
    We propose a novel compact linear programming (LP) relaxation for binary sub-modular MRF in the context of object segmentation. Our model is obtained by linearizing an l1+l_1^+-norm derived from the quadratic programming (QP) form of the MRF energy. The resultant LP model contains significantly fewer variables and constraints compared to the conventional LP relaxation of the MRF energy. In addition, unlike QP which can produce ambiguous labels, our model can be viewed as a quasi-total-variation minimization problem, and it can therefore preserve the discontinuities in the labels. We further establish a relaxation bound between our LP model and the conventional LP model. In the experiments, we demonstrate our method for the task of interactive object segmentation. Our LP model outperforms QP when converting the continuous labels to binary labels using different threshold values on the entire Oxford interactive segmentation dataset. The computational complexity of our LP is of the same order as that of the QP, and it is significantly lower than the conventional LP relaxation

    Lower Critical Dimension of Ising Spin Glasses

    Full text link
    Exact ground states of two-dimensional Ising spin glasses with Gaussian and bimodal (+- J) distributions of the disorder are calculated using a ``matching'' algorithm, which allows large system sizes of up to N=480^2 spins to be investigated. We study domain walls induced by two rather different types of boundary-condition changes, and, in each case, analyze the system-size dependence of an appropriately defined ``defect energy'', which we denote by DE. For Gaussian disorder, we find a power-law behavior DE ~ L^\theta, with \theta=-0.266(2) and \theta=-0.282(2) for the two types of boundary condition changes. These results are in reasonable agreement with each other, allowing for small systematic effects. They also agree well with earlier work on smaller sizes. The negative value indicates that two dimensions is below the lower critical dimension d_c. For the +-J model, we obtain a different result, namely the domain-wall energy saturates at a nonzero value for L\to \infty, so \theta = 0, indicating that the lower critical dimension for the +-J model exactly d_c=2.Comment: 4 pages, 4 figures, 1 table, revte

    Ground-State Roughness of the Disordered Substrate and Flux Line in d=2

    Get PDF
    We apply optimization algorithms to the problem of finding ground states for crystalline surfaces and flux lines arrays in presence of disorder. The algorithms provide ground states in polynomial time, which provides for a more precise study of the interface widths than from Monte Carlo simulations at finite temperature. Using d=2d=2 systems up to size 4202420^2, with a minimum of 2×1032 \times 10^3 realizations at each size, we find very strong evidence for a ln2(L)\ln^2(L) super-rough state at low temperatures.Comment: 10 pages, 3 PS figures, to appear in PR

    Statistical Topography of Glassy Interfaces

    Get PDF
    Statistical topography of two-dimensional interfaces in the presence of quenched disorder is studied utilizing combinatorial optimization algorithms. Finite-size scaling is used to measure geometrical exponents associated with contour loops and fully packed loops. We find that contour-loop exponents depend on the type of disorder (periodic ``vs'' non-periodic) and they satisfy scaling relations characteristic of self-affine rough surfaces. Fully packed loops on the other hand are unaffected by disorder with geometrical exponents that take on their pure values.Comment: 4 pages, REVTEX, 4 figures included. Further information can be obtained from [email protected]

    No spin-glass transition in the "mobile-bond" model

    Full text link
    The recently introduced ``mobile-bond'' model for two-dimensional spin glasses is studied. The model is characterized by an annealing temperature T_q. On the basis of Monte Carlo simulations of small systems it has been claimed that this model exhibits a non-trivial spin-glass transition at finite temperature for small values of T_q. Here the model is studied by means of exact ground-state calculations of large systems up to N=256^2. The scaling of domain-wall energies is investigated as a function of the system size. For small values T_q<0.95 the system behaves like a (gauge-transformed) ferromagnet having a small fraction of frustrated plaquettes. For T_q>=0.95 the system behaves like the standard two-dimensional +-J spin-glass, i.e. it does NOT exhibit a phase transition at T>0.Comment: 4 pages, 5 figures, RevTe

    Simulation of the Zero Temperature Behavior of a 3-Dimensional Elastic Medium

    Full text link
    We have performed numerical simulation of a 3-dimensional elastic medium, with scalar displacements, subject to quenched disorder. We applied an efficient combinatorial optimization algorithm to generate exact ground states for an interface representation. Our results indicate that this Bragg glass is characterized by power law divergences in the structure factor S(k)Ak3S(k)\sim A k^{-3}. We have found numerically consistent values of the coefficient AA for two lattice discretizations of the medium, supporting universality for AA in the isotropic systems considered here. We also examine the response of the ground state to the change in boundary conditions that corresponds to introducing a single dislocation loop encircling the system. Our results indicate that the domain walls formed by this change are highly convoluted, with a fractal dimension df=2.60(5)d_f=2.60(5). We also discuss the implications of the domain wall energetics for the stability of the Bragg glass phase. As in other disordered systems, perturbations of relative strength δ\delta introduce a new length scale Lδ1/ζL^* \sim \delta^{-1/\zeta} beyond which the perturbed ground state becomes uncorrelated with the reference (unperturbed) ground state. We have performed scaling analysis of the response of the ground state to the perturbations and obtain ζ=0.385(40)\zeta = 0.385(40). This value is consistent with the scaling relation ζ=df/2θ\zeta=d_f/2- \theta, where θ\theta characterizes the scaling of the energy fluctuations of low energy excitations.Comment: 20 pages, 13 figure

    Generating droplets in two-dimensional Ising spin glasses by using matching algorithms

    Full text link
    We study the behavior of droplets for two dimensional Ising spin glasses with Gaussian interactions. We use an exact matching algorithm which enables study of systems with linear dimension L up to 240, which is larger than is possible with other approaches. But the method only allows certain classes of droplets to be generated. We study single-bond, cross and a category of fixed volume droplets as well as first excitations. By comparison with similar or equivalent droplets generated in previous works, the advantages but also the limitations of this approach are revealed. In particular we have studied the scaling behavior of the droplet energies and droplet sizes. In most cases, a crossover of the data can be observed such that for large sizes the behavior is compatible with the one-exponent scenario of the droplet theory. Only for the case of first excitations, no clear conclusion can be reached, probably because even with the matching approach the accessible system sizes are still too small.Comment: 11 pages, 16 figures, revte

    Rail-freight crew scheduling with a genetic algorithm

    Get PDF
    peer reviewedThis article presents a novel genetic algorithm designed for the solution of the Crew Scheduling Problem (CSP) in the rail-freight industry. CSP is the task of assigning drivers to a sequence of train trips while ensuring that no driver’s schedule exceeds the permitted working hours, that each driver starts and finishes their day’s work at the same location, and that no train routes are left without a driver. Real-life CSPs are extremely complex due to the large number of trips, opportunities to use other means of transportation, and numerous government regulations and trade union agreements. CSP is usually modelled as a set-covering problem and solved with linear programming methods. However, the sheer volume of data makes the application of conventional techniques computationally expensive, while existing genetic algorithms often struggle to handle the large number of constraints. A genetic algorithm is presented that overcomes these challenges by using an indirect chromosome representation and decoding procedure. Experiments using real schedules on the UK national rail network show that the algorithm provides an effective solution within a faster timeframe than alternative approaches

    Fuzzy-logic controlled genetic algorithm for the rail-freight crew-scheduling problem

    Get PDF
    AbstractThis article presents a fuzzy-logic controlled genetic algorithm designed for the solution of the crew-scheduling problem in the rail-freight industry. This problem refers to the assignment of train drivers to a number of train trips in accordance with complex industrial and governmental regulations. In practice, it is a challenging task due to the massive quantity of train trips, large geographical span and significant number of restrictions. While genetic algorithms are capable of handling large data sets, they are prone to stalled evolution and premature convergence on a local optimum, thereby obstructing further search. In order to tackle these problems, the proposed genetic algorithm contains an embedded fuzzy-logic controller that adjusts the mutation and crossover probabilities in accordance with the genetic algorithm’s performance. The computational results demonstrate a 10% reduction in the cost of the schedule generated by this hybrid technique when compared with a genetic algorithm with fixed crossover and mutation rates
    corecore